



## Cast 28 – Anaemia

2<sup>1/2</sup>-year-old girl is referred to your ED with history of lethargy over the last 6 months. Born at 36 weeks, normal delivery and good APGAR, and is fully immunised. She is the Twin 2 and has been known to have delayed growth for past 1 year. Her sister Twin 1 is taller and 5 kg heavier. Otherwise, no other significant history.

On examination she is pale, but alert and active. She had normal observations.

The results are given below:

### FBE

HB - 64g/L ( 115-150 )

WCC - 8.1 x 10<sup>9</sup>/L ( 5.0-15.0 )

PLATELETS – 285 x 10<sup>9</sup>/L ( 150-450 )

RCC (Red Cell Count) – 5.12 x 10<sup>12</sup>/L ( 3.90-5.30 )

HCT (Haematocrit) – 0.25L/L ( 0.33-0.46 )

MCV (Mean corpuscular volume) - 49 fL ( 75-90 )

MCH (Mean corpuscular haemoglobin) - 12.4 pg ( 24.0-31.0 )

MCHC (Mean Corpuscular Hemoglobin Concentration) - 256 g/L ( 310-355 )

RDW (Red Cell Distribution Width) - 20.7 % ( 11.0-15.0 )

MPV (mean platelet volume) - 8.3 fL ( 6.5-12.0 )

NEUTROPHILS - 26.4 % - 2.10 x 10<sup>9</sup>/L ( 1.50-8.00 )

LYMPHOCYTES - 62.4 % - 5.00 x 10<sup>9</sup>/L ( 1.50-7.00 )

MONOCYTES - 6.6 % - 0.50 x 10<sup>9</sup>/L ( 0.20-1.00 )

EOSINOPHILS - 4.0 % - 0.30 x 10<sup>9</sup>/L ( 0.00-1.00 )

BASOPHILS - 0.6 % - 0.00 x 10<sup>9</sup>/L ( 0.00-0.20 )

### IRON STUDIES (Serum/Plasma)

IRON - <2 umol/L ( 7-30 )

TRANSFERRIN - 5.0 g/L ( 2.0-3.6 )

IRON BINDING CAPACITY - 124 umol/L ( 45-76 )

IRON SATURATION - <2 % ( 15-46 )

FERRITIN - 3 ug/L ( 20-310 )



**Q 1 – List six (6) Red flags for anaemia in a child of this age group requiring admission? (6 marks)**

- Hb <60g/L (including iron deficiency)
- Tachycardia, cardiac murmur or signs of cardiac failure
- Features of haemolysis eg dark urine, jaundice, scleral icterus
- Associated reticulocytopenia
- Presence of nucleated red blood cells on blood film
- Associated thrombocytopenia or neutropenia, may indicate malignancy or an infiltrative disorder
- Severe vitamin B12 or folate deficiency
- Need for red cell transfusion (where possible defer transfusion until a definitive diagnosis is made)

**Q 2 – State the three (3) types of anaemia based on mean corpuscular volume (MCV)? (3 marks)**

- Microcytic - **MCV<80 fL** (femtoliters)
- Normocytic - **(MCV 80-100 fL)**
- Macrocytic - **(MCV>100 fL)**

**Q 3 – List three (3) differentials for Microcytic Hypochromic Anaemia? (3 marks)**

- **Iron Deficiency anaemia**
- **Beta or Alpha Thalassaemia Minor/trait**
- **Rare causes**
  - Chronic inflammation
  - Lead poisoning (high blood lead level)
  - Sideroblastic anaemia

**Q 4 – List three (3) differentials for Normocytic normochromic Anaemia? (3 marks)**

- **Haemolytic anaemia**
- **Sickle cell anaemia**
- **Hypoplastic/aplastic anaemia**
- **Chronic disease**
- **Blood loss**



**Q 5 – List three (3) differentials you would consider for Macrocytosis with or without anaemia? ( 3 marks)**

- Vitamin B12 and folate deficiency
- Myelodysplasia
- Medications eg anticonvulsants, immunosuppressants and zidovudine

Other possible answers below:

- Liver disease
- Hypothyroidism

## Additional notes

|                                 | Iron        | Transferrin/TIBC | Transferrin Saturation | Ferritin    |
|---------------------------------|-------------|------------------|------------------------|-------------|
| Iron Deficiency                 | Low         | High/Normal      | Low                    | Low         |
| Anaemia of Chronic inflammation | Low         | Low/Normal       | Low/Normal             | High/Normal |
| Thalassaemia                    | High/Normal | Low/Normal       | High/Normal            | High/Normal |

|                         | Iron Depletion | Iron Deficiency | Iron Deficiency Anaemia | Iron Overload |
|-------------------------|----------------|-----------------|-------------------------|---------------|
| Ferritin                | Low            | Low             | Low                     | High          |
| Iron                    | Normal         | Low             | Low                     | High          |
| Transferrin             | Normal         | High            | High                    | Low           |
| Transferrin Saturation  | Normal         | Low             | Low                     | High          |
| Transferrin receptors   | Normal         | High            | High                    | Normal        |
| Mean Corpuscular volume | Normal         | Normal          | Low                     | Normal        |
| Haemoglobin             | Normal         | Normal          | Low                     | Normal        |

**Reference:**

[https://www.rch.org.au/clinicalguide/guideline\\_index/Anaemia/](https://www.rch.org.au/clinicalguide/guideline_index/Anaemia/)  
[https://www.rch.org.au/clinicalguide/guideline\\_index/iron\\_deficiency/](https://www.rch.org.au/clinicalguide/guideline_index/iron_deficiency/)

Iron studies or serum iron should not be requested to diagnose iron deficiency. Serum iron reflects recent iron intake and does not provide a measure of the iron stores.

**Other features on the blood film appearance that prompt further investigation.**

| Film features                | Cause                                              | Investigation                                                                                                       |
|------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Target cells                 | Iron deficiency anaemia<br>Haemoglobinopathies     | Ferritin<br>Haemoglobinopathy testing (HPLC/Hb Electrophoresis)                                                     |
| Elliptocytes or pencil cells | Iron deficiency anaemia<br>Haemoglobinopathies     | Ferritin<br>Haemoglobinopathy testing (HPLC/Hb Electrophoresis)                                                     |
| Spherocytes                  | Hereditary spherocytosis<br>Autoimmune haemolysis  | Direct antiglobulin test (DAT)(Coombs test)<br>Blood group and antibody screening (BGAB)<br>Eosin 5 maleimide (E5M) |
| Fragmented red cells         | Haemolysis                                         | Platelet count<br>Bilirubin, Reticulocyte count<br>Urea + Creatinine<br>Coagulation profile                         |
| Bite and blister cells       | G6PD deficiency                                    | G6PD assay                                                                                                          |
| Nucleated red blood cells    | Bone marrow infiltration<br>Haemolysis             | Consider bone marrow examination<br>Thalassaemia testing (HPLC/Hb Electrophoresis)                                  |
| Sickle cells                 | Sickle cell anaemia                                | Haemoglobinopathy testing (HPLC/Hb Electrophoresis)                                                                 |
| Tear drop cells              | Bone marrow infiltration<br>Vitamin B12 deficiency | May need bone marrow examination<br>Active vitamin B12                                                              |



## Normocytic Normochromic Anaemia

### Haemolytic anaemia

- Acute haemolysis in childhood can be a life-threatening illness and all cases should be discussed with a haematologist
- Admit children with haemolytic anaemia for observation. Frequent heart rate monitoring is required to identify tachycardia which may indicate a further drop in Hb
- Repeat FBC within 6-12 hours to detect ongoing haemolysis
- Monitor reticulocyte count and bilirubin
- Additional investigations will be guided by blood film findings eg Coombs test (direct antiglobulin test), blood group and antibody screening (BGAB), G6PD assay and Eosin-5 maleimide red cell staining (diagnosis of hereditary spherocytosis)

### Sickle cell anaemia

### Hypoplastic/aplastic anaemia

- Causes
- Acute leukaemia, aplastic anaemia, infiltrative disorders
- Drugs (eg cytotoxics, chloramphenicol, sulfonamides)
- Viral infection
- Severe nutritional deficiencies (vitamin B12 or folate deficiency), however usually children present with macrocytic red cells
- Reticulocyte count is usually low
- Differential diagnosis based on FBC results
- Consider bone marrow infiltration if neutrophils and/or platelets also decreased
- If isolated anaemia with low reticulocyte count with normal platelet and neutrophil counts, consider transient erythroblastopenia of childhood (TEC) or congenital forms (eg Diamond-Blackfan anaemia)
- Bone marrow aspirate is usually required for diagnosis

### Chronic disease

- Normochromic normocytic anaemia can be seen with chronic inflammation and chronic disease such as renal disease



- Reticulocyte count may be low
- Platelet count may be elevated
- Further investigation (eg UEC, LFT and ESR) may be indicated depending on clinical features

#### **Blood loss**

- Normochromic normocytic anaemia can be seen with acute blood loss
- Reticulocyte count may be normal or elevated
- Correlate with any bleeding symptoms

## **Macrocytic Anaemia**

#### **Vitamin B12 and folate deficiency**

- Can be associated with failure to thrive or neurodevelopmental problems (regression, seizures, irritability, poor feeding)
- Vitamin B12 deficiency may be seen in exclusively breast-fed infants of mothers with vitamin B12 deficiency, children with a vegan or vegetarian diet, pernicious anaemia and metabolic disorders
- Characteristic blood film findings include teardrop red cells and hypersegmented neutrophils and often neutropenia or thrombocytopenia
- Requires urgent investigation with red cell folate and active vitamin B12
- If low active vitamin B12 suggest serum homocysteine and urine methylmalonic acid
- Treatment must be commenced urgently, particularly if neurological symptoms or regression

Other causes of red cell macrocytosis with or without anaemia

- **Myelodysplasia**
- **Medications eg anticonvulsants, immunosuppressants and zidovudine**
- **Liver disease**
- **Hypothyroidism**